Day I: Climate Change and Renewable Energy

SI 5060: Saving the World with the Science of Sustainability!

Instructor: Simo

Saturday, July 9th, 2022

2:30-4:00 PM

Special thanks to Chad Wilson, who taught this class and made the original slides in 2020!

Our goals for today

- I. Define light, energy, and the greenhouse effect.
- 2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.
- 3. Understand why global warming is such a serious problem.
- 4. Understand how greenhouse gases are produced.
- 5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.

400 nm

500 nm

600 nm

700 nm

The primary source of all light on Earth is the sun

Earth) Where is solar radiation in this picture?

Pause for questions!

I. Define light, energy, and the greenhouse effect.

- Next...
 - 2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.
 - 3. Understand why global warming is such a serious problem.
 - 4. Understand how greenhouse gases are produced.
 - 5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.

Let's get gassy—a molecular view on the greenhouse effect

In the case of our planet, it's not plastic trapping heat—it's GAS

78%

Nitrogen (N₂)

Oxygen (O₂)

The rest of it includes...

Water vapor (H_2O) Carbon dioxide (CO_2) Argon (Ar) Neon (Ne) Helium (He) Methane (CH₄) Krypton (Kr) Hydrogen (H₂)

Gases in the atmosphere can be transparent or absorbing

Gases in the atmosphere can be transparent or absorbing at different wavelengths of light

http://www.ces.fau.edu/nasa/module-2/how-greenhouse-effect-works.php

Wavelengths (in microns)

Each gas has its own problems

GHGs:

Except for these two—transparent in the visible and infrared!

Using what we know, let's scale up to Earth

Pause for questions!

I. Define light, energy, and the greenhouse effect.

2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.

Next...

- 3. Understand why global warming is such a serious problem.
- 4. Understand how greenhouse gases are produced.
- 5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.

So we've got a bit of a problem...

Okay, uh, quite a few problems... Part 211

Increased frequency and intensity of storms

Hurricane Florence (NASA)

Extinction due to

Ocean acidification Animals like crabs will have their calciferous shells softened

Bleached coral

Pause for questions and discussion

I. Define light, energy, and the greenhouse effect.

- 2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.
- 3. Understand why global warming is such a serious problem.

Next...

- 4. Understand how greenhouse gases are produced.
- 5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.

Where are greenhouse gases coming from?

When we combust fossil fuels to extract their energy, GHGs are a byproduct

Where are greenhouse gases coming from?

Where are greenhouse gases coming from?

How much methane produced by cow farts/burps in a day?

1.5 billion x 100-200 L = A whole cows of CH4 lot!!

24

Which gases are to blame?

Which gases are to blame?

World Greenhouse Gas Emissions in 2016 Total: 49.4 GtCO₂e

Global Warming Potential (GWP)

Greenhouse Gas	Atmospheric Concentration			100-Year Global
	Pre-Industrial (1000-1750)	Recent (2019)	Atmospheric Lifetime (Years)	Warming Potential
CO ₂	280 ppm	410 ppm	50-200	Ι
CH₄	0.7 ppm	2 ppm	12	23
N ₂ O	0.270 ppm	0.330 ppm	114	296
CF ₄	40 ppt	80 ppt	> 50,000	5700
SF ₆	0	10 ppt	3200	22,200

Pause for questions!

I. Define light, energy, and the greenhouse effect.

- 2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.
- 3. Understand why global warming is such a serious problem.

4. Understand how greenhouse gases are produced.

Next...

5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.

Thermal science can help by reducing waste heat

Back to the coal power plant example...

We waste heaps of energy!

"It is estimated that between **20 to 50%** of industrial energy input is lost as waste heat in the form of hot exhaust gases, cooling water, and heat lost from hot equipment surfaces and heated products."

U.S. energy consumption by source and sector, 2020

quadrillion British thermal units (Btu)

Options that aren't burning fossil fuels!

Two kinds of solar energy: solar photovoltaic and solar thermal

Solar photovoltaic

Solar thermal

We can also extract energy from fluids already flowing in nature!

Hydropower

Wind power

All done!

I. Define light, energy, and the greenhouse effect.

- 2. Understand <u>what</u> gases are responsible for global warming and <u>how</u> they work.
- 3. Understand why global warming is such a serious problem.
- 4. Understand how greenhouse gases are produced.
- 5. Learn about how we can avoid producing greenhouse gases and the role thermal science plays in doing so.